Retour


Thèmes de recherche
  • Analyse variationnelle / Variational analysis
  • Optimisation multivoque / Set optimization
  • Optimisation numérique / Numerical optimization
  • Analyse non lisse / Nonsmooth analysis
  • Analyse convexe / Convex analysis

Recherche

Direction de thèses :

Yvesner Marcelin (2013-2016) : Développements récents en analyse multivoque : prédérivées et optimisation multivoque.

Géraldine Pascaline (2009-2011) : Convergence de Fisher et H-différentiabilité des applications multivoques.

Michaël Gaydu (2007-2010) : Développements autour de la résolutions d'inclusions variationnelles métriquement régulières.

Co-direction de thèses :

  • Steeve Burnet (2008-2012) : Méthodes de résolution d'inclusions variationnelles sous hypothèses de stabilité. (Directeur de thèse : A. Piétrus)

Direction de mémoires de Master 2 :

  • Michaël GAYDU (2006-2007)
  • Guilloux BENOIT (2011-2012)
  • Béatrice TABLON (2009-2010)
  • Yvesner MARCELIN (2011-2012)
  • Mario RUSTER (2010-2011)
  • Christine MARIMOUTOU (2009-2010)
  • Steeve BURNET (2007-2008)
  • Cyril Etzol (2009-2010)

 

 


Enseignements

Liste non exhaustive de mes enseignements (celle-ci peut varier d'une année à l'autre).

  • Analyse variationnelle (Master 2)
  • Analyse fonctionnelle (Master 1)
  • Analyse convexe (Master 1)
  • Equations différentielles ordinaires (Master 1)
  • Topologie et calcul différentiel (Licence 2)
  • Géométrie (Licence 2)

 


Autres activités

Organisation de conférences :

  • Président du comité d'organisation de la conférence internationale international conference on mathematics of optimization and decision (CIMODE 06, Avril 2006). Voir l'affiche de la conférence ici.
  • Coordonateur scientifique de la conférence "Journées du GDR MOA" (Juin 2012)

Publications (22)


Article dans des revues


Stability of minimizers of set optimization problems. Michaël GAYDU, Michel H. Geoffroy, Célia JEAN-ALEXIS, Diana Nedelcheva. Geoffroy, Célia Jean-Alexis, Diana Nedelcheva. Stability of minimizers of set optimization problems. Positivity, Springer Verlag, 2017, 21 (1), pp.127-141. ⟨10.1007/s11117-016-0412-6⟩. ⟨hal-01295221⟩


Article dans des revues


Prederivatives of convex set-valued maps and applications to set optimization problems. Michaël GAYDU, Michel H. Geoffroy, Yvesner MARCELIN. Geoffroy, yvesner Marcelin. Prederivatives of convex set-valued maps and applications to set optimization problems. Journal of Global Optimization, Springer Verlag, 2016, 64 (1), pp.141-158 ⟨10.1007/s10898-015-0338-8⟩. ⟨hal-01172386⟩


Article dans des revues


An inverse mapping theorem for H-differentibale set-valued maps. Michaël GAYDU, Michel H. Geoffroy, Célia JEAN-ALEXIS. Geoffroy, Célia Jean-Alexis. An inverse mapping theorem for H-differentibale set-valued maps. Journal of Mathematical Analysis and Applications, Elsevier, 2015, 421 (1), pp.298-313. ⟨10.1016/j.jmaa.2014.07.006⟩. ⟨hal-01023227⟩
Inexact Newton Methods and Dennis--Moré Theorems for Nonsmooth Generalized Equations. Radek Cibulka, Asen L. Dontchev, Michel H. Geoffroy. Dontchev, Michel H. Geoffroy. Inexact Newton Methods and Dennis--Moré Theorems for Nonsmooth Generalized Equations . SIAM Journal on Control and Optimization, Society for Industrial and Applied Mathematics, 2015, 53 (2), pp.1003-1019. ⟨hal-01147931⟩


Article dans des revues


Metric subregularity of the convex subdifferential in Banach spaces. Francisco J. Aragon Artacho, Michel H. Geoffroy. Aragon Artacho, Michel H. Geoffroy. Metric subregularity of the convex subdifferential in Banach spaces. Journal of Nonlinear and Convex Analysis, Yokohama, 2014, 15 (1), pp.35-47. ⟨hal-00937184⟩


Article dans des revues


A Newton iteration for differentiable set-valued maps. Michaël GAYDU, Michel H. Geoffroy. Geoffroy. A Newton iteration for differentiable set-valued maps. Journal of Mathematical Analysis and Applications, Elsevier, 2013, 399, pp.213-224. ⟨hal-00750537⟩


Article dans des revues


Generalized differentiation and fixed points sets behaviors with respect to Fisher convergence. Michel H. Geoffroy, Géraldine Pascaline. Geoffroy, Géraldine Pascaline. Generalized differentiation and fixed points sets behaviors with respect to Fisher convergence. Journal of Mathematical Analysis and Applications, Elsevier, 2012, 387, pp.464-474. ⟨hal-00624139⟩


Article dans des revues


Metric subregularity of order q and the solving of inclusions. Michaël GAYDU, Michel H. Geoffroy, Célia JEAN-ALEXIS. Geoffroy, Célia Jean-Alexis. Metric subregularity of order q and the solving of inclusions. Central European Journal of Mathematics, Springer Verlag, 2011, 9 (1), pp.147-161. ⟨hal-00543141⟩
Metric Regularity of Newton's Iteration. Francisco J. Aragon Artacho, Asen L. Dontchev, Michaël GAYDU, Michel H. Geoffroy, Vladimir Veliov. Aragon Artacho, Asen L. Dontchev, Michaël Gaydu, Michel H. Geoffroy, Vladimir Veliov. Metric Regularity of Newton's Iteration. SIAM Journal on Control and Optimization, Society for Industrial and Applied Mathematics, 2011, 49 (2), pp.339-362. ⟨hal-00577233⟩


Article dans des revues


Tikhonov regularization of metrically regular inclusions. Michaël GAYDU, Michel H. Geoffroy. Geoffroy. Tikhonov regularization of metrically regular inclusions. Positivity, Springer Verlag, 2009, 13 (2), pp.385-398. ⟨hal-00493628⟩
An inertial proximal scheme for nonmonotone mappings. Michel H. Geoffroy. Geoffroy. An inertial proximal scheme for nonmonotone mappings. Journal of Mathematical Analysis and Applications, Elsevier, 2009, 350 (1), pp.147-156. ⟨hal-00507805⟩


Communications avec actes


A fast iterative scheme for variational inclusions. Michel H. Geoffroy, Alain PIETRUS. Geoffroy, Alain Piétrus. A fast iterative scheme for variational inclusions. Seventh AIMS International Conference on Dynamical Systems, Differential Equations and Applications, May 2008, Arlington, TX, United States. pp.250-258. ⟨hal-00507814⟩


Article dans des revues


Convergence of the proximal point method for metrically regular mappings. Francisco J. Aragon Artacho, Asen L. Dontchev, Michel H. Geoffroy. Aragon Artacho, Asen L. Dontchev, Michel H. Geoffroy. Convergence of the proximal point method for metrically regular mappings. ESAIM: Proceedings, EDP Sciences, 2007, 17, pp.1-8. ⟨hal-00507812⟩
Regularity properties of a cubically convergent scheme for generalized equations. Michel H. Geoffroy, Alain PIETRUS. Geoffroy, Alain Piétrus. Regularity properties of a cubically convergent scheme for generalized equations. Communications on Pure and Applied Mathematics, Wiley, 2007, 6 (4), pp.983-996. ⟨hal-00507806⟩


Article dans des revues


Stability of a cubically convergent method for generalized equations. Michel H. Geoffroy, Alain PIETRUS, Saïd Hilout. Geoffroy, Alain Piétrus, Saïd Hilout. Stability of a cubically convergent method for generalized equations. Set-Valued Analysis, Springer Verlag, 2006, 14 (1), pp.41-54. ⟨hal-00508319⟩
Approximation of fixed points of metrically regular mappings. Michel H. Geoffroy. Geoffroy. Approximation of fixed points of metrically regular mappings. Numerical Functional Analysis and Applications, 2006, 27 (5-6), pp.565-581. ⟨hal-00507809⟩
Iterative solving of generalized equations with calm solution mappings. Michel H. Geoffroy. Geoffroy. Iterative solving of generalized equations with calm solution mappings. Journal of Mathematical Analysis and Applications, Elsevier, 2006, 313 (2), pp.689-699. ⟨hal-00507817⟩


Article dans des revues


A general iterative procedure for solving nonsmooth generalized equations. Michel H. Geoffroy, Alain PIETRUS. Geoffroy, Alain Piétrus. A general iterative procedure for solving nonsmooth generalized equations. Computational Optimization and Applications, Springer Verlag, 2005, 31 (1), pp.57-67. ⟨hal-00507818⟩


Article dans des revues


An iterative method for perturbed generalized equations. Michel H. Geoffroy, Alain PIETRUS. Geoffroy, Alain Piétrus. An iterative method for perturbed generalized equations. Comptes rendus de l'Académie bulgare des Sciences, Bulgarian Academy of Sciences, 2004, 57 (11), pp.7-12. ⟨hal-00507828⟩


Article dans des revues


A superquadratic method for solving generalized equations in the Hölder case. Michel H. Geoffroy, Alain PIETRUS. Geoffroy, Alain Piétrus. A superquadratic method for solving generalized equations in the Hölder case. Ricerce di matematica, 2003, 52 (2), pp.231-240. ⟨hal-00508317⟩
Acceleration of convergence in Dontchev's iterative method for solving variational inclusions. Michel H. Geoffroy, Alain PIETRUS, Saïd Hilout. Geoffroy, Alain Piétrus, Saïd Hilout. Acceleration of convergence in Dontchev's iterative method for solving variational inclusions. Serdica Mathematical Journal, Bulgarian Academy of Sciences, 2003, 29 (1), pp.45-54. ⟨hal-00508318⟩


Communications avec actes


On a convergence of lower semicontinuous functions linked with the graph convergence of their subdifferentials. Michel H. Geoffroy, Marc Lassonde. Geoffroy, Marc Lassonde. On a convergence of lower semicontinuous functions linked with the graph convergence of their subdifferentials. Constructive, experimental, and nonlinear analysis, 1999, Limoges, France. pp.93-109. ⟨hal-00508320⟩

lamia
Michel H. GEOFFROY (PU)
Mathématiques
maths-info
B302